DETERMINING THE ORDER-UP-TO-LEVEL USING THE NORMAL APPROXIMATION IN A DISCRETE CONTEXT

Valladolid, July 10-12, 2013

Ester Guijarro (esquitar@doe.upv.es)
Eugenia Babiloni (mabagri@doe.upv.es)
Manuel Cardós (mcardos@doe.upv.es)
Marta E. Palmer (marpalga@doe.upv.es)
AGENDA

- Introduction
- The Traditional fill rate expression in periodic systems
- Experimental design
- Analysis of the results
- Conclusions and practical implications
INTRODUCTION

Inventory Management

When a replenishment order should be placed?

How much should be ordered?
INTRODUCTION

Inventory Management

When a replenishment order should be placed?

How much should be ordered?

Periodic Review (R, S)

Review Period, R (predefine)

Order-up-to-Level, S
INTRODUCTION

Inventory Management

When a replenishment order should be placed?

Periodic Review (R, S)

Review Period, R
(predefine)

How much should be ordered?

Order-up-to-Level, S

Min costs

Target service level

Fill Rate, FR
INTRODUCTION

Inventory Management

When a replenishment order should be placed?

Order-up-to-Level, S

Review Period, R (predefine)

Min costs

Target service level

Fill Rate, \(FR \)

\(FR_{Trad} \sim \) Normal distribution
INTRODUCTION

Inventory Management

- **When a replenishment order should be placed?**
- **How much should be ordered?**

Periodic Review (R, S)

- **Review Period,** R (predefine)
- **Order-up-to-Level,** S

Target service level

Min costs

Fill Rate, FR

$FR_{Trad} \sim \text{Normal distribution}$
INTRODUCTION

Inventory Management

- **When** place a replenishment order?
- **How much** should be ordered?

Periodic Review (R, S)

- **Review Period, R** (predefine)
- **Order-up-to-Level, S**

Purpose

Determining under which conditions the FR_{Trad} provides an accurate enough estimation of the S in a discrete demand context.

$FR_{Trad} \sim$ Normal distribution
THE TRADITIONAL \(FR \) IN PERIODIC SYSTEMS

Fill Rate, \(FR \)

- Fraction of demand that can be immediately served using the on hand stock (Lee and Billington, 1992)

\[
FR = 1 - \frac{E(\text{unfulfilled demand})}{E(\text{total demand})} \quad \text{or} \quad FR = \frac{E(\text{fulfilled demand})}{E(\text{total demand})}
\]
The periodic review inventory system

THE TRADITIONAL FR IN PERIODIC SYSTEMS

The periodic review inventory system

On hand stock (OH)
Inventory position (IP)
Net stock (NS)

Review
Arrival
Review
Arrival
The periodic review inventory system

Key time period: \(R+L \)

Units

On hand stock \((OH)\)

Inventory position \((IP)\)

Net stock \((NS)\)

Review

Arrival

Review

Arrival

Key time period: \(R+L \)
Traditional Fill Rate, FR_{Trad}

- (Hadley and Whitin, 1963) derive a simple approximation to compute the expected shortage as:

$$E(\text{shortage}) = E\left[D_{R+L} - S\right]^+$$

- Considering Normal demand distribution with mean μ and variance σ^2

$$E(\text{shortage}) = \sigma_{R+L} G\left(k_{R+L}(S)\right)$$

where $G(k_t(S))$ is a special function of the safety stock factor $k_t(S)$ and the standard normal distribution (Appendix B of (Silver et al., 1998))
Traditional Fill Rate, FR_{Trad}

- In a backorder system

\[E(\text{shortage}) = E(\text{unfulfilled demand}) \]

\[FR = 1 - \frac{E(\text{unfulfilled demand})}{E(\text{total demand})} \]

Then, the fill rate can be computed following the (Hadley and Whitin, 1963) expression as:

\[FR = 1 - \frac{E(\text{shortage})}{E(\text{total demand})} \]

\[FR = 1 - \frac{\sigma_{R+L} G(k_{R+L}(S))}{R \mu} \]
Purpose

- The estimation of the parameters of a periodic review \((R, S)\) policy when the \(FR_{Trad}\) is used and demand is discrete

- The problem consists of calculating the smallest order-up-to-level \(S\) that guarantees the achievement of the \(FR^*\)

Data

<table>
<thead>
<tr>
<th>Factor</th>
<th>Values</th>
<th>Total cases: 235,620</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poisson (\lambda)</td>
<td>0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 0.9, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 7, 10, 15, 20</td>
<td></td>
</tr>
<tr>
<td>Binomial (n)</td>
<td>1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20</td>
<td></td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.01, 0.05, 0.1, 0.15, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99</td>
<td></td>
</tr>
<tr>
<td>Negative Binomial (r)</td>
<td>0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 0.9, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4</td>
<td></td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.1, 0.15, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99</td>
<td></td>
</tr>
<tr>
<td>Inventory System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FR^*)</td>
<td>0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99</td>
<td></td>
</tr>
<tr>
<td>(R)</td>
<td>1, 2, 3, 4, 5, 7, 10, 15, 20</td>
<td></td>
</tr>
<tr>
<td>(L)</td>
<td>1, 3, 5, 7, 10, 15, 20</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Experimental factors and values
Assumptions

- L is constant
- predefined review period R
- excess demand is backordered
- the replenishment order is added to the inventory at the end of the period in which it is received
- demand during a period is fulfilled with the on hand stock at the beginning of the period
- the demand process is assumed to be stationary with a known, discrete and i.i.d. distribution function
EXPERIMENTAL DESIGN

Experimental Design

STEP 1
Combination of a set of parameters of R, L, demand and FR^*

STEP 2
Calculation of minimum S with the Traditional FR (S_{Trad})

STEP 3
Calculation of minimum S with the Exact FR (S_{Exact})

STEP 4
Analyzing and quantifying deviations
Experimental Design

STEP 1
Combination of a set of parameters of R, L, demand and FR^*

STEP 2
Calculation of minimum S with the Traditional FR (S_{Trad})

STEP 3
Calculation of minimum S with the Exact FR (S_{Exact})

STEP 4
Analyzing and quantifying deviations

Relative errors (RE)

$$RE = \frac{S_{Exact} - S_{Trad}}{S_{Exact}}$$
Experimental Design

STEP 1
Combination of a set of parameters of R, L, demand and FR^*

STEP 2
Calculation of minimum S with the Traditional FR (S_{Trad})

STEP 3
Calculation of minimum S with the Exact FR (S_{Exact})

STEP 4
Analyzing and quantifying deviations

relative errors (RE)

$$RE = \frac{S_{Exact} - S_{Trad}}{S_{Exact}}$$

- If $RE < 0$
 - $S_{Trad} > S_{Exact} \Rightarrow$ The system *reaches the target fill rate*, although increasing the average stock level and the holding costs

- If $RE > 0$
 - $S_{Trad} < S_{Exact} \Rightarrow$ The policy is *not reaching the target fill rate* and therefore the system is *less protected* against stockouts than managers believe.
RESULTS ANALYSIS

Classification and Regression Trees (CART)

- Data mining technique → exploratory tool to identify under which conditions (*demand pattern and inventory characteristics*) the FR_{Trad} is accurate enough to estimate S in a *discrete* demand context
RESULTS ANALYSIS

 Classification and Regression Trees (CART)

- Data mining technique → exploratory tool to identify under which conditions (demand pattern and inventory characteristics) the FR_{Trad} is accurate enough to estimate S in a discrete demand context.

 Definition of variables

- Dependent variable: categorical variable

 "yes" if \(S_{Trad} = S_{Exact} \)

 "no" if \(S_{Trad} \neq S_{Exact} \)
RESULTS ANALYSIS

Classification and Regression Trees (CART)

- Data mining technique → exploratory tool to identify under which conditions (demand pattern and inventory characteristics) the FR_{Trad} is accurate enough to estimate S in a discrete demand context

Definition of variables

- **Dependent variable**: categorical variable

 "yes" if $S_{Trad} = S_{Exact}$

 "no" if $S_{Trad} \neq S_{Exact}$

- **Independent variables**:

 - categories of demand (erratic, lumpy, smooth and intermittent)
 - squared coefficient of variation of demand sizes, CV^2
 - average inter-demand interval, p
 - the target fill rate, FRO
 - the mean of the random variable during R, μ_R
 - mean of the random variable during $R+L$, μ_{R+L}
 - exact S, S_{Exact}
RESULTS ANALYSIS
RESULTS ANALYSIS

Good performance

If CV² ≤ 0.306

Bad performance

If CV² > 0.306
RESULTS ANALYSIS

Category of demand
Syntetos et al., 2005

Good performance

Bad performance
RESULTS ANALYSIS

There are some cases where $S_{\text{Trad}} \neq S_{\text{Exact}}$.

Bad performance

Good performance
RESULTS ANALYSIS

Classification errors

- Knowing the classification errors that imply choosing the FR_{Trad} in every single node, even if the exact method is more efficient.

- Table 2 presents the percentage of misclassified cases per node, the typology of the errors (RE1 or RE2) and its mean and variance.

<table>
<thead>
<tr>
<th>Node identification</th>
<th>% cases $RE = 0$</th>
<th>% $RE1$</th>
<th>μ_{RE1} (%)</th>
<th>σ_{RE1} (%)</th>
<th>% $RE2$</th>
<th>μ_{RE2} (%)</th>
<th>σ_{RE2} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV2≤0.306 and p≤1.367</td>
<td>85,5</td>
<td>11,5</td>
<td>-10,6</td>
<td>16,2</td>
<td>2,9</td>
<td>6,9</td>
<td>8,9</td>
</tr>
<tr>
<td>CV2≤0.306; p>1.367 FRO≤0.97 and S≤29</td>
<td>72,1</td>
<td>22,0</td>
<td>-35,1</td>
<td>30,9</td>
<td>5,9</td>
<td>29,8</td>
<td>16,2</td>
</tr>
<tr>
<td>CV2≤0.306; p>1.367 FRO≤0.97 and S>29</td>
<td>40,7</td>
<td>48,2</td>
<td>-3,6</td>
<td>4,1</td>
<td>11,1</td>
<td>1,8</td>
<td>1,5</td>
</tr>
<tr>
<td>CV2≤0.306; p>1.367 and FRO>0.97</td>
<td>21,8</td>
<td>0,2</td>
<td>-14,7</td>
<td>11,8</td>
<td>78,0</td>
<td>19,3</td>
<td>15,8</td>
</tr>
<tr>
<td>CV2 > 0.306</td>
<td>33,5</td>
<td>43,5</td>
<td>-13,7</td>
<td>15,2</td>
<td>23,0</td>
<td>11,2</td>
<td>11,1</td>
</tr>
</tbody>
</table>

Table 2. Misclassified errors per node, identifying the typology or error (RE1 or RE2)
RESULTS ANALYSIS

Classification errors

- Knowing the classification errors that imply choosing the FR_{Trad} in every single node, even if the exact method is more efficient.

- Table 2 presents the percentage of misclassified cases per node, the typology of the errors (RE1 or RE2) and its mean and variance.

<table>
<thead>
<tr>
<th>Node identification</th>
<th>% cases $RE = 0$</th>
<th>% RE1</th>
<th>μ_{RE1} (%)</th>
<th>σ_{RE1} (%)</th>
<th>% RE2</th>
<th>μ_{RE2} (%)</th>
<th>σ_{RE2} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CV2 \leq 0.306$ and $p \leq 1.367$</td>
<td>85,5</td>
<td>11,5</td>
<td>-10,6</td>
<td>16,2</td>
<td>2,9</td>
<td>6,9</td>
<td>8,9</td>
</tr>
</tbody>
</table>
| $CV2 \leq 0.306$; $p > 1.367$
$FRO \leq 0.97$ and $S \leq 29$ | 72,1 | 22,0 | -35,1 | 30,9 | 5,9 | 29,8 | 16,2 |
| $CV2 \leq 0.306$; $p > 1.367$
$FRO \leq 0.97$ and $S > 29$ | 40,7 | 48,2 | -3,6 | 4,1 | 11,1 | 1,8 | 1,5 |
| $CV2 \leq 0.306$; $p > 1.367$
and $FRO > 0.97$ | 21,8 | 0,2 | -14,7 | 11,8 | 78,0 | 19,3 | 15,8 |
| $CV2 > 0.306$ | 33,5 | 43,5 | -13,7 | 15,2 | 23,0 | 11,2 | 11,1 |

Table 2. Misclassified errors per node, identifying the typology or error (RE1 or RE2)
CONCLUSIONS

Information of Table 2

Twofold purpose:

- **Decision tool** → If managers know the *characteristics of the item*, they can know if FR_{Trad} is an *appropriate tool* to establish the S or they should use the exact expression.

- **Corrective tool** → if a company is using the FR_{Trad} to determine the S, the results of this work provide information about the *risk* of using it.

It seems to be a *relationship* between the *category of the demand* and the *performance* of FR_{Trad}.
CONCLUSIONS

Erratic

Lumpy

Smooth

Intermitent

Syntentos et al., 2005

CV²

1.32

0.49

p
CONCLUSIONS

Node 3

CV\(^2\) vs. \(p\)

Erratic

Lumpy

Smooth

Intermitent

Bad performance

1.32

0.49
CONCLUSIONS

Node 3

Erratic
Lumpy

Bad performance

Node 4

Smooth
Intermitent

85.5% cases $S_{Trad} = S_{Exact}$
CONCLUSIONS

Node 3

- Erratic
- Lumpy

Node 4

- Smooth
- Intermittent

Nodes 8, 9, 7

- 85.5% cases $S_{\text{Trad}} = S_{\text{Exact}}$
- Depends on FR^* and S

- If $FR^* > 0.97 \rightarrow \text{bad performance}$
CONCLUSIONS

Further research

- Studying other fill rate expressions and proposing a reference framework to choose the most efficient method to compute the order-up-to-level

- Extending these results to the lost sales context
Thank you for your the attention

7th International Conference on Industrial Engineering and Industrial Management

Valladolid, July 10-12, 2013

Ester Guijarro (esguitar@doe.upv.es)
Eugenia Babiloni (mabagri@doe.upv.es)
Manuel Cardós (mcardos@doe.upv.es)
Marta E. Palmer (marpalga@doe.upv.es)